Structure in Text: Extraction and Exploitation

Prabhakar Raghavan
Agenda

• Market overview
 • Structured and unstructured search – what convergence?
• Application scenarios
 • What my customers (think they) want
 • What it will take
• Technical tofu
 • Distance metrics for XML documents
 • Linear algebra as a foundation
• Summary/research agenda
Market overview
Unstructured vs. Structured Data in the Enterprise

Structured 20%

Unstructured 80%

Processes
- Apps
- CMS
- ERP
- dB

Forms

People

Files
- Reports
- Forms
- WWW

©2002 Verity, Inc.
Data: Volume vs. Revenues

- Unstructured
- Structured

~$500M LFR
Consequences

- **Value creation demands:**
 - **Extract structure**
 - Document capture/conversion
 - Classification, linguistic tagging
 - Entity/relation extraction
 - The results will be noisy
 - **Exploit structure**
 - Ad-words
 - Structured navigation
 - XML querying
Round pegs and square holes

<table>
<thead>
<tr>
<th>Unit of Retrieval</th>
<th>Unstructured</th>
<th>Structured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection for Retrieval</td>
<td>Distance Metric</td>
<td>Hard Selection</td>
</tr>
<tr>
<td>Results</td>
<td>Consumed by humans: Limited Number. “Sort of” right; OK to get it wrong – Human “ratification”.</td>
<td>Consumed by machines: Composition: Need correct answers. Nuclear powerplant syndrome.</td>
</tr>
</tbody>
</table>
Semi-structured text: Round pegs meet square holes

<table>
<thead>
<tr>
<th>Unit of Retrieval</th>
<th>Selection for Retrieval</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Select then rank</td>
<td>??</td>
</tr>
<tr>
<td></td>
<td>Semi-soft measures</td>
<td></td>
</tr>
</tbody>
</table>

Will still get it wrong sometimes. Want to dramatically limit human ratification.
Example – relational taxonomies
Information retrieval platforms today

- Text and parametric search
- Classification
- Clustering and taxonomy induction
 - A modicum of “text mining”
- Index only, no repository
 - No content retrieval
 - (Exception: web search caches)
 - Affects “Return” portion of XML queries
A step back: what’s all this in aid of?

• End users don’t want to
 • Search
 • Browse
 • Solve relevance problems
 • Deal with performance problems
 • Hear of your magic panacea for the above

• **Users want to solve their business problems**
Application scenarios
Warning: Some of the following slides have been produced by Corporate Marketing. The graphic(s) nature of these slides may overwhelm innocent researchers.
Domain knowledge in search

- Giants tix pair Saturday game $60
- Sunny 3br 2ba top floor vu 1600+util
- 97 accord pw pb ps 74k mi 8k obo
Mining semi-structured text

Product recalls can cost company’s millions in profits and loss of brand value.

1. Product “problem tickets” completed at point of origin
2. “Tickets” converted real-time to dynamic, categorized information
3. Smart monitoring identifies critical problems and send alert notice
4. Management can research, isolate and rectify problems quickly

©2002 Verity, Inc.
Resume Extraction/routing

- Scan/OCR
- Digital Docs
- Routing/Classification
- XML Store
- Paper Docs
- Entity Extraction
- XML

©2002 Verity, Inc.
Extracted Resume

Name: Wassily Fernandez de la Vega

Experience:

Education: ...

Address: ...

Last name: ??

First name: ??

Years: 1994-96

Company: HP

Title: Sr. Engineer

Text: blahblah
More semi-structured user needs

• Find loss-making software companies with revenues of 50-200M last year, and repeated mutual deals with other software companies within 90-day intervals.
 • Input: SEC Filings, Press Releases

• Want a family vacation to a warm place with outdoor activities, a few museums and churches, budget 3000 and I prefer to fly Singapore Airlines.
 • Input: Car, Air, Hotel, Travel info/opinion websites
What will it take?

- User need parsing
 - Query expression and semantics
- Entity Extraction
 - (Semi-)structure from unstructured text
- Retrieval
 - XML querying on unreliable structure
- Integration
 - Heterogeneous data sources
- It’s ok to get it wrong! (occasionally)
Entity extraction and noisy XML

- **Static extraction**: $60 is a price
 - (for a pair!)
- **Relationship extraction**
 - Microsoft **acquires** SAP
- **Dynamic extraction**
 - Saturday’s game is probably __________
- **Net**: you won’t get a clean table;
 - Noisy, incomplete XML

Vendors can do the easy portions well.
Retrieval engine

• Integrate results from heterogeneous sources
 • No presumption of a common DTD
• Need a semi-soft notion of query-doc proximity
 • *Camembert distance measure*
 • Ideally with a time-tested mathematical foundation
 • Linear algebra, probability, ...
Information integration

- On-the-fly integration
 - Score/rank aggregation a first step
 - Classic schema normalization
- Query planning and optimization
- Ontology mapping and merging

No enterprise vendor really does this well; Most stop at federation of results. Web companies beginning to.
Technical Tofu
Document and query trees

Doc:

- Book
- Title
- Author
 - Last Name
 - Aho
 - First Name
 - Alfred

Query:

- Book
- Author
 - Al
 - Aho
Vector spaces for XML
(w/V. Kakade, Stanford)

- Goal: Distance metric between XML queries and/or documents
- Approach: embed queries, docs in a vector space
- Benefits
 - Camembert distance metric
 - Query-by-example
 - Full power of linear algebra available
 - Dimension reduction/LSI
 - Advanced machine learning
 - Support Vector Machines for Classification
 - Mining – can cluster docs, elements etc.
Background

- **Schlieder and Meuss:**
 - One axis for each possible sub-tree of any tree
 - Each query/doc becomes a vector in this space
 - Inner product (cosine) similarity measure
 - Exponentially many sub-trees

- **JuruXML (IBM Haifa):**
 - Use only root-leaf paths as axes
 - Enhanced to cope with sub-path matches
 - Book/Author/Aho vs. Book/Author/Last_Name/Aho
 - Extra computation outside vector space
 - Good for query scoring
 - Loses other benefits commonplace in text retrieval
Goals of new encoding

- Avoid exponential blowup
 - Control # axes = index complexity
 - Trade index size for retrieval quality (what’s this?)
- Camembert distance: a pure vector inner product
 - Gives us LSI, SVM’s and other TLA’s
- Net – all text retrieval functionality for XML docs
Main ideas

- A filter F selects a class of sub-trees
 - E.g., F selects all sub-paths of length k
 - Sub-trees thus selected are axes
- For $k=2$, this tree generates
 - Book/Author, Author/Al, Author/Aho
- By varying F we control
 - Size of index (# axes)
 - Quality of matches
- We almost have everything we wanted
 - Camembert distance measure
 - Full power of linear algebra
What are we missing?

- Doc=Author/Last_Name/Aho vs. Query=Author/Aho
- How do we capture this in a vector space?
- At index time, compute random substrings of root-leaf paths in docs
 - E.g., Author/Aho is a substring from the Doc
- Do the same for each query
- \(\Rightarrow \) Randomized Camembert distance
 - not random docs or queries
 - Analysis possible – what does it say?
Randomized index

- Reduces Camembert distance computation to a vector space inner product.
- **Analysis:** *Expected* distance grows with similarity between docs/queries.
 - Gives us the means for search, similar docs, clustering;
 - Use of linear algebra means we can invoke SVM’s etc. for document classification/routing.
Experiments

- INEX 2002 documents
 - 12000+ articles from IEEE transactions
- Benchmark query suite (“Content Only – CO”)
 - Each query specifies a user need
 - Engine must return a sequence of doc elements
- Known judgements for each element in the corpus
 - Relevance – how relevant to the user need
 - Coverage – too deep? too shallow?
 ⇒ Composite quality measure for each query/element pair
Experiments

- Encouraging; perhaps not statistically significantly so.
 - Index blowup, retrieval quality compared
 - Quality can be improved using our techniques, relative to treating each doc as a “bag of words”.
- Classification and clustering “out of the box”
 - On some data, out-perform tailor-made XML clustering/classification algorithms.
- Much more detailed experimentation is needed.
Summary
Research challenges

• Step up on entity extraction – dynamic etc.
• Retrieval platforms
 • Unreliable, noisy structure
 • Semi-soft (“camembert”) distance measures
• Information integration
• Pilot vertical domain applications
 • Full semantic web too daunting
 • End-users won’t annotate – incentive structure?