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ABSTRACT 

In our research on superimposed information management, 
we have developed applications where information 
elements in the superimposed layer serve to annotate, 
comment, restructure, and combine selections from one or 
more existing documents in the base layer. Base documents 
tend to be unstructured or semi-structured (HTML pages, 
Excel spreadsheets, and so on) with marks delimiting 
selections. Selections in the base layer can be 
programmatically accessed via marks to retrieve content 
and context. The applications we have built to date allow 
creation of new marks and new superimposed elements 
(that use marks), but they have been browse-oriented and 
tend to expose the line between superimposed and base 
layers. Here, we present a new access capability, called bi-
level queries, that allows an application or user to query 
over both layers as a whole. Bi-level queries provide an 
alternative style of data integration where only relevant 
portions of a base document are mediated (not the whole 
document) and the superimposed layer can add information 
not present in the base layer. We discuss our framework for 
superimposed information management, an initial 
implementation of a bi-level query system with an XML 
Query interface, and suggest mechanisms to improve 
scalability and performance. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval---Information filtering, Retrieval models, H.2.5 
[Database Management]: Heterogeneous Databases. 

General Terms 
Management, Performance, Design. 

Keywords 
Bi-level queries, SPARCE, Superimposed information manage-
ment, Information integration. 

 

1. INTRODUCTION 
You are conducting background research for a paper you are 
writing. You have found relevant information in a variety of 
sources: HTML pages on the web, PDF documents on the web 
and on your SIGMOD anthology of CDs, Excel spreadsheets and 
Word documents from your past work in a related area, and so on. 
You identify relevant portions of the documents and add 
annotations with clarifications, questions, and conclusions. As 
you collect information, you frequently reorganize the 
information you have collected thus far (and your added 
annotations) to reflect your perspective. You intentionally keep 
your information structure loose so you can easily move things 
around. When you have collected sufficient information, you 
import it, along with your comments, in to a word-processor 
document. As you write your paper in your word-processor, you 
revisit your sources to see information in its context. Also, as you 
write your paper you reorganize its contents, including the im-
ported information, to suit the flow. Occasionally, you search the 
imported annotations, selections, and the context of the selections. 
You mix some of the imported information with other information 
in the paper and transform the mixture to suit presentation needs. 

Most researchers will be familiar with manual approaches to the 
scenario we have just described. Providing computer support for 
this scenario requires a toolset with the following capabilities: 

1. Select portions of documents of many kinds (PDF, HTML, 
etc.) in many locations (web, CD, local file system, etc.), and 
record the selections. 

2. Create and associate annotations (of varying structure) with 
document selections. 

3. Group and link document selections and annotations, 
reorganize them as needed, and possibly even maintain 
multiple organizations. 

4. See a document selection in its context by opening the 
document and navigating to the selected region, or access the 
context of a selection without launching its original document. 

5. Place document selections and annotations in traditional docu-
ments (such as the word-processor document that contains 
your paper). 

6. Search and transform a mixture of document selections, 
annotations, and other information. 

Systems that support some subset of these capabilities exist, but 
no one system supports the complete set. It is hard to use a 
collection of systems to get the full set of features because the 
systems do not interoperate well. Some hypertext systems can 
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create multiple organizations of the same information, but they 
tend to lack in the types of source, granularity of information, or 
the location of information consulted. For example, Dexter [6] 
requires all information consulted to be stored in its proprietary 
database. Compound document systems can address sub-
documents, but they tend to have many display constraints. For 
example, OLE 2 [9] relies on original applications to render 
information. Neither type of system supports querying a mixture 
of document selections and annotations.  

Superimposed information management is an alternative solution 
for organizing heterogeneous in situ information, at document and 
sub-document granularity. Superimposed information (such as 
annotations) refers to data placed over existing information 
sources (base information) to help organize, access, connect and 
reuse information elements in those sources [8]. In our previous 
work [12], we have described the Superimposed Pluggable 
Architecture for Contexts and Excerpts (SPARCE), a middleware 
for superimposed information management, and presented some 
superimposed applications built using SPARCE. Together they 
support Capabilities 1 through 4. In this paper, we show how 
SPARCE can be used to support Capability 6. Details of support 
for Capability 5 are outside the scope of this paper. 

Before we proceed with the details of how we support Capability 
6, we introduce a superimposed application called RIDPad [12]. 
Figure 1 shows a RIDPad document that contains information 
selections and annotations related to the topic of information 
integration. The document shown contains eight items: CLIO, 
Definition, SchemaSQL, Related Systems, Goal, Model, Query 
Optimizer, and Press.  These items are associated with six distinct 
base documents of three kinds—PDF, Excel, and HTML. An item 
has a name, a descriptive text, and a reference (called a mark) to a 
selection in a base document. For example, the item labeled 
‘Goal’ contains a mark into a PDF document. The boxes labeled 
Schematic Heterogeneity and Garlic are groups. A group is a 
named collection of items and other groups. A RIDPad document 
is a collection of items and groups. 

RIDPad affords many operations for items and groups. A user can 
create new items and groups, and move items between groups. 
The user can also rename, resize, and change visual 
characteristics such as color and font for items and groups. With 
the mark associated with an item, the user can navigate to the base 
layer if necessary, or examine the mark’s properties and browse 
context information (such as containing paragraph) from within 
RIDPad via a reusable Context Browser we have built.  

The operations RIDPAD affords are at the level of items and 
groups. However, we have seen the need to query and manipulate 
a RIDPad document and its base documents as a whole. For 
example, possible queries over the RIDPad document in Figure 1 
include:  

Q1: List base documents used in this RIDPad document.  
Q2: Show abstracts of papers related to Garlic.  
Q3: Create an HTML table of contents from the groups and items. 

Query Q1 examines the paths to base documents of marks associ-
ated with items in the RIDPad document. Q2 examines the 
context of marks of items in the group labeled ‘Schematic 
Heterogeneity.’ Q3 transforms the contents of the RIDPad docu-
ment to another form (table of contents). In general, queries such 

as these operate on both superimposed information and base 
information. Consequently, we call them bi-level queries.  

 
Figure 1: A RIDPad document. 

There are many possible choices on how to present the contents of 
superimposed documents (such as the RIDPad document in 
Figure 1) and base documents for querying. We could make the 
division between the superimposed and base documents obvious 
and let the user explicitly follow marks from superimposed 
information to base information. Instead, our approach is to 
integrate a superimposed document’s contents and related base 
information to present a uniform representation of the integrated 
information for querying.  

The rest of this paper is organized as follows: Section 2 provides 
an overview of SPARCE. Section 3 provides an overview of bi-
level query systems and describes a naïve implementation of a bi-
level query system along with some example bi-level queries. 
Section 4 discusses some applications and implementation 
alternatives for bi-level query systems. Section 5 briefly reviews 
related work. Section 6 summarizes the paper. 

We use the RIDPad document in Figure 1 for all examples in this 
paper. 

2. SPARCE OVERVIEW 
The Superimposed Pluggable Architecture for Contexts and 
Excerpts (SPARCE) facilitates management of marks and context 
information in the setting of superimposed information 
management [12]. A mark is an abstraction of a selection in a 
base document. Several mark implementations exist, typically one 
per base type (PDF, HTML, Excel, and so on). A mark 
implementation chooses an addressing scheme appropriate for the 
base type it supports. For example, an MS Word mark 
implementation uses the starting and ending character index of a 
text selection, whereas an MS Excel mark uses the row and 
column names of the first and last cell in the selection. All mark 
implementations provide a common interface to address base 
information, regardless of base type or access protocol they 



support. A superimposed application can work uniformly with 
any base type due to this common interface.  

Context is information concerning a base-layer element. Presen-
tation information such as font name, containment information 
such as enclosing paragraph and section, and placement 
information such as line number are examples of context 
information. An Excerpt is the content of a marked base-layer 
element. (We treat an excerpt also as a context element.) Figure 2 
shows the PDF mark corresponding to the item ‘Goal’ (of the 
RIDPad document in Figure 1) activated. The highlighted portion 
is the marked region. Table 1 shows some of the context elements 
for this mark. 

 
Figure 2: A PDF mark activated. 

Figure 3 shows the SPARCE architecture reference model. The 
Mark Management module is responsible for operations on marks 
(such as creating and storing marks). The Context Management 
module retrieves context information. The Superimposed 
Information Management module provides storage service to 
superimposed applications. The Clipboard is used for inter-
process communication. 

Table 1: Some context elements of a PDF mark. 

Element name Value 

Excerpt provide applications and users 
with … Garlic system 

Font name Times New Roman 
Enclosing paragraph Loosely speaking, the goal … 
Section Heading Garlic Overview 

SPARCE uses mediators [13] called context agents to interact 
with different base types. A context agent is responsible for re-
solving a mark and returning the set of context elements 
appropriate to that mark. A context agent is different from me-
diators used in other systems because it only mediates portions of 
base document a mark refers to. For example, if a mark refers to 
the first three lines of a PDF document, the mark’s context agent 
mediates those three lines and other regions immediately around 
the lines. A user could retrieve broader context information for 
this mark, but the agent will not do so by default. 

 
Figure 3: SPARCE architecture reference model. 

A superimposed application allows creation of information ele-
ments (such as annotations) associated with marks. It can use an 
information model of its choice (SPARCE does not impose a 
model) and the model may vary from one application to another. 
For example, RIDPad uses a group-item model (simple nesting), 
whereas the Schematics Browser, another application we have 
built, uses an ER model [2, 12]. The superimposed model may be 
different from any of the base models. A detailed description of 
SPARCE is available in our previous work [12]. 

3. BI-LEVEL QUERY SYSTEM 
A bi-level query system allows a superimposed application and its 
user to query the superimposed information and base information 
as a whole. User queries are in a language appropriate to the 
superimposed model. For example, XQuery may be the query 
language if the superimposed model is XML (or a model that can 
be mapped to XML), whereas SQL may be the query language if 
superimposed information is in the relational model. 

 
Figure 4: Overview of a bi-level query system. 

Figure 4 provides an overview of a bi-level query system. An oval 
in the figure represents an information source. A rectangle 
denotes a process that manipulates information. Arrows indicate 
data flow. The query processor accepts three kinds of 
information—superimposed, mark, and context. Model trans-
formers transform information from the three sources in to 
model(s) appropriate for querying. One of these transformers, the 
context transformer, is responsible for transforming context in-
formation. We restrict bi-level query systems to use only one 
superimposed model at a time, for practical reasons. Choosing a 
query language and the model for the result can be hard if 
superimposed models are mixed. 
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3.1 Implementation 
We have implemented a naïve bi-level query system for the XML 
superimposed model. We have developed a transformer to convert 
RIDPad information to XML. We have developed a context 
transformer to convert context information to XML. We are able 
to use mark information without any transformation since 
SPARCE already represents that information in XML. User que-
ries can be in XPath, XSLT, and XQuery. We use Microsoft’s 
XML SDK 4.0 [10] and XQuery demo implementation [11] to 
process queries.  

We use three XML elements to represent RIDPad information in 
XML—<RIDPadDocument> for the document, <Group> for 
a group, and <Item> for an item. For each RIDPad item, the 
system creates four children nodes in the corresponding <Item> 
element. These children nodes correspond to the mark, container 
(base document where the mark is made), application, and 
context. We currently transform the entire context of the mark. 
The XML data is regenerated if the RIDPad document changes. 

 
Figure 5: Partial XML data from a RIDPad document. 

Figure 5 shows partial XML data generated from the RIDPad 
document in Figure 1. It contains two <Group> elements (corre-
sponding to the two groups in Figure 1). The ‘Garlic’ element 
contains four <Item> elements (one for each item in that group 
in Figure 1). There is also an <Item> element for the group-less 
item CLIO. The <Item> element for ‘Goal’ is partially expanded 
to reveal the <Mark>, <Container>, <Application>, and 
<Context> elements it contains. Contents of these elements are 
not shown. 

3.2 Example Bi-level Queries 
We now provide bi-level query expressions for the queries Q1 to 
Q3 listed in Section 1.  

Q1: List base documents used in this RIDPad document. 

This query must retrieve the path to the base document of the 
mark associated with each item in a RIDPad document. The 
following XQuery expression does just that. The Location 
element in the Container element contains the path to the 
document corresponding to the mark associated with an item. 

<Paths> {FOR $l IN 
document("source")//Item/Container/Location 
RETURN <Path>{$l/text()}</Path> 
} </Paths> 

Q2: Show abstracts of papers related to Garlic.  

This query must examine the context of items in the group labeled 
‘Garlic.’ The following XPath expression suffices. This 
expression returns the text of a context element whose name 
attribute is ‘Abstract’, but only for items in the required group. 

//Group[@name='Garlic']/Item/Context//Elemen
t[@name='Abstract']/text() 

Q3: Create an HTML table of contents from the groups and items. 

We use an XSLT style-sheet to generate a table of contents (TOC) 
from a RIDPad document. Figure 6 shows the query in the left 
panel and its results in the right panel. The right panel embeds an 
instance of MS Internet Explorer. The result contains one list item 
(HTML LI tag) for each group in the RIDPad document. There is 
also one list sub-item (also an HTML LI tag) for each item in a 
group. The group-less item CLIO is in the list titled ‘Other Items.’ 
A user can save the HTML results, and open it in any browser 
outside our system. 

 
Figure 6: RIDPAD document transformed to HTML TOC. 

The HTML TOC in Figure 6 shows that each item has a hyperlink 
(HTML A tag) attached to it. A hyperlink is constructed using a 
custom URL naming scheme and handled using a custom handler. 
Custom URLs are one means of implementing Capability 5 iden-
tified in Section 1.  

4. DISCUSSION 
The strength of the current implementation is that it retrieves 
context information for only those parts of base documents that 
the superimposed document refers to (via marks). Interestingly, 
the same is also its weakness: it retrieves context information for 
all parts of the base documents the superimposed document refers 
to, regardless of whether executing a query requires those ele-
ments. For example, only Query Q2 looks at context information 
(Q1 looks only at container information, Q3 looks at superim-
posed information and mark information). However, the XML 
data generated includes context information for all queries. Gen-
erating data in this manner is both inefficient and unnecessary—
information may be replicated (different items may use the same 
mark), and context information can be rather large (the size of the 
complete context of a mark could exceed the size of its docu-



ment), depending on what context elements a context agent 
provides. It is possible to get the same results by separating 
RIDPad data from the rest and joining the various information 
sources. Doing so preserves the layers, and potentially reduces the 
size of data generated. Also, it is possible to execute a query in-
crementally and only generate or transform data that qualifies in 
each stage of execution.  

Figure 7 gives an idea of the proposed change to the schema of 
the XML data generated. Comparing with the Goal Item element 
of Figure 5, we see that mark, container, application, and context 
information are no longer nested inside the Item element. Instead, 
an <Item> element has a new attribute called markID. In the 
revised schema, the RIDPad data, mark, container, application, 
and context information exist independently in separate 
documents, with references linking them. With the revised 
schema, no context information would be retrieved for Query Q1. 
Context information would be retrieved only for items in the 
‘Schematic Heterogeneity’ group when Q2 is executed. 

 
Figure 7: XML data in the revised schema. 

Preserving the layers of data has some disadvantages. A major 
disadvantage is that a user will need to use joins to connect data 
across layers. Such queries tend to be error-prone, and writing 
them can take too much time and effort. A solution would be to 
allow a user to write bi-level queries as they currently do (against 
a schema corresponding to the data in Figure 5), and have the 
system rewrite the query to match the underlying XML schema 
(as in Figure 7). That is, user queries would actually be expressed 
against a view of the actual data. We are currently pursuing this 
approach to bi-level querying. 

Our current approach of grabbing context information for all 
marks could be helpful in some cases. For example, if a query 
workload ends up retrieving context of all (or most) marks, the 
current approach is similar to materializing views, and could lead 
to faster overall query execution. 

The current implementation does not exploit relationships be-
tween superimposed information elements. For example, Figure 8 
shows the RIDPad document in Figure 1 enhanced with two rela-
tionships ‘Uses’ and ‘Addresses’ from the item CLIO. A user may 
exploit these relationships, to pose richer queries and possibly 
recall more information. For example, with the RIDPad document 
in Figure 8, a user could now pose the following queries: What 
system does CLIO use? How is CLIO related to SchemaSQL? 

Our initial use anticipated for bi-level queries was to query su-
perimposed and base information as a whole, but we have noticed 
that superimposed application developers and users could use the 

capability to construct and format (on demand) superimposed 
information elements themselves. For example, a RIDPad item’s 
name may be a section heading. Such a representation of an item 
could be expressed as the result of a query or a transformation. 

 
Figure 8: A RIDPad document with relationships. 

Bi-level queries could also be used for repurposing information. 
For example, Query Q3 could be extended to include the contents 
of items (instead of just names) and transform the entire RIDPad 
document to HTML (like in Figure 6).  The HTML version can 
then be published on the web. 

We have demonstrated bi-level queries using XML query 
languages, but superimposed applications might benefit from 
other query languages. The choice of the query language depends 
largely on the superimposed information model (which in turn 
depends on the task at hand). More than one query language may 
be appropriate for some superimposed information models, in 
some superimposed applications. For example, both CXPath [3] 
and XQuery may be appropriate for some applications that use the 
XML superimposed model. 

The base applications we have worked with so far do not 
themselves have query capabilities. If access to context or a selec-
tion over context elements can be posed as a query in a base 
application, we might benefit from applying distributed query-
processing techniques. Finally, the scope of a bi-level query is 
currently the superimposed layer and the base information acces-
sible via the marks used. Some applications might benefit from 
including marks generated automatically (for example, using IR 
techniques) in the scope of a query. 

5. RELATED WORK 
SPARCE differs from mediated systems such as Garlic [4] and 
MIX [1]. Sources are registered with SPARCE simply by the act 
of mark creation in those sources. Unlike in Garlic there is no 
need to register a source and define its schema. Unlike MIX, 
SPARCE does not require a DTD for a source. 



METAXPath [5] allows a user to attach metadata to XML ele-
ments. It enhances XPath with an ‘up-shift’ operator to navigate 
from data to metadata (and metadata to meta-metadata, and so 
on). A user can start at any level, but only cross between levels in 
an upwards direction. In our system, it is possible to move both 
upwards and downwards between levels. METAXPath is 
designed to attach only metadata to data. A superimposed 
information element can be used to represent metadata about a 
base-layer element, but it has many other uses.  

CXPath [3] is an XPath-like query language to query concepts, 
not elements. The names used in query expressions are concept 
names, not element names. In the CXPath model there is no 
document root—all concepts are accessible from anywhere. For 
example, the CXPath expression ‘/Item’ and ‘Item’ are equiva-
lent. They both return all Item elements when applied to the XML 
data in Figure 5. The ‘/’ used for navigation in XPath follows a 
relationship (possibly named) in CXPath. For example, the ex-
pression “/Item/{Uses}Group” returns all groups that are related 
to an item by the ‘Uses’ relationship when applied to an XML 
representation of the RIDPad in Figure 8. CXPath uses predefined 
mappings to translate CXPath expressions to XPath expressions. 
There is one mapping for each concept name and for each direc-
tion of every relationship of every XML source. In our system, 
we intend to support multiple sources without predefined map-
pings, but we would like our query system to operate at a 
conceptual level like CXPath does. 

As discussed in Section 4, preserving the layers of data, yet al-
lowing a user to express queries as if all data is in one layer 
means queries are expressed against views. Information Manifold 
[7] provides useful insight in to how heterogeneous source may be 
queried via views. That system associates a capability record with 
each source to describe its inputs, outputs, and selection capabili-
ties. We currently do not have such a notion in our system, but we 
expect to consider source descriptions in the context of distributed 
query processing mentioned in Section 4. 

6. SUMMARY 
Our existing framework for superimposed applications supports 
examination and manipulation of individual superimposed and 
base information elements. More global ways to search and ma-
nipulate information become necessary as the size and number of 
documents gets larger. A bi-level query system is a first step in 
that direction. We have an initial implementation of a query 
system, but still have a large space of design options to explore. 
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