
Querying Bi-level Information
Sudarshan Murthy

David Maier
Dept. of CSE, OGI School of Sc. & Eng. at OHSU

20000 NW Walker Road
Beaverton, OR 97006, USA

+1 503 748 7068

smurthy, maier, lmd @cse.ogi.edu

Lois Delcambre

ABSTRACT

In our research on superimposed information management,
we have developed applications where information
elements in the superimposed layer serve to annotate,
comment, restructure, and combine selections from one or
more existing documents in the base layer. Base documents
tend to be unstructured or semi-structured (HTML pages,
Excel spreadsheets, and so on) with marks delimiting
selections. Selections in the base layer can be
programmatically accessed via marks to retrieve content
and context. The applications we have built to date allow
creation of new marks and new superimposed elements
(that use marks), but they have been browse-oriented and
tend to expose the line between superimposed and base
layers. Here, we present a new access capability, called bi-
level queries, that allows an application or user to query
over both layers as a whole. Bi-level queries provide an
alternative style of data integration where only relevant
portions of a base document are mediated (not the whole
document) and the superimposed layer can add information
not present in the base layer. We discuss our framework for
superimposed information management, an initial
implementation of a bi-level query system with an XML
Query interface, and suggest mechanisms to improve
scalability and performance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval---Information filtering, Retrieval models, H.2.5
[Database Management]: Heterogeneous Databases.

General Terms
Management, Performance, Design.

Keywords
Bi-level queries, SPARCE, Superimposed information manage-
ment, Information integration.

1. INTRODUCTION
You are conducting background research for a paper you are
writing. You have found relevant information in a variety of
sources: HTML pages on the web, PDF documents on the web
and on your SIGMOD anthology of CDs, Excel spreadsheets and
Word documents from your past work in a related area, and so on.
You identify relevant portions of the documents and add
annotations with clarifications, questions, and conclusions. As
you collect information, you frequently reorganize the
information you have collected thus far (and your added
annotations) to reflect your perspective. You intentionally keep
your information structure loose so you can easily move things
around. When you have collected sufficient information, you
import it, along with your comments, in to a word-processor
document. As you write your paper in your word-processor, you
revisit your sources to see information in its context. Also, as you
write your paper you reorganize its contents, including the im-
ported information, to suit the flow. Occasionally, you search the
imported annotations, selections, and the context of the selections.
You mix some of the imported information with other information
in the paper and transform the mixture to suit presentation needs.

Most researchers will be familiar with manual approaches to the
scenario we have just described. Providing computer support for
this scenario requires a toolset with the following capabilities:

1. Select portions of documents of many kinds (PDF, HTML,
etc.) in many locations (web, CD, local file system, etc.), and
record the selections.

2. Create and associate annotations (of varying structure) with
document selections.

3. Group and link document selections and annotations,
reorganize them as needed, and possibly even maintain
multiple organizations.

4. See a document selection in its context by opening the
document and navigating to the selected region, or access the
context of a selection without launching its original document.

5. Place document selections and annotations in traditional docu-
ments (such as the word-processor document that contains
your paper).

6. Search and transform a mixture of document selections,
annotations, and other information.

Systems that support some subset of these capabilities exist, but
no one system supports the complete set. It is hard to use a
collection of systems to get the full set of features because the
systems do not interoperate well. Some hypertext systems can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Seventh International Workshop on the Web and Databases (WebDB
2004) June 17–18, 2004, Paris, France.
Copyright author/owner.

create multiple organizations of the same information, but they
tend to lack in the types of source, granularity of information, or
the location of information consulted. For example, Dexter [6]
requires all information consulted to be stored in its proprietary
database. Compound document systems can address sub-
documents, but they tend to have many display constraints. For
example, OLE 2 [9] relies on original applications to render
information. Neither type of system supports querying a mixture
of document selections and annotations.

Superimposed information management is an alternative solution
for organizing heterogeneous in situ information, at document and
sub-document granularity. Superimposed information (such as
annotations) refers to data placed over existing information
sources (base information) to help organize, access, connect and
reuse information elements in those sources [8]. In our previous
work [12], we have described the Superimposed Pluggable
Architecture for Contexts and Excerpts (SPARCE), a middleware
for superimposed information management, and presented some
superimposed applications built using SPARCE. Together they
support Capabilities 1 through 4. In this paper, we show how
SPARCE can be used to support Capability 6. Details of support
for Capability 5 are outside the scope of this paper.

Before we proceed with the details of how we support Capability
6, we introduce a superimposed application called RIDPad [12].
Figure 1 shows a RIDPad document that contains information
selections and annotations related to the topic of information
integration. The document shown contains eight items: CLIO,
Definition, SchemaSQL, Related Systems, Goal, Model, Query
Optimizer, and Press. These items are associated with six distinct
base documents of three kinds—PDF, Excel, and HTML. An item
has a name, a descriptive text, and a reference (called a mark) to a
selection in a base document. For example, the item labeled
‘Goal’ contains a mark into a PDF document. The boxes labeled
Schematic Heterogeneity and Garlic are groups. A group is a
named collection of items and other groups. A RIDPad document
is a collection of items and groups.

RIDPad affords many operations for items and groups. A user can
create new items and groups, and move items between groups.
The user can also rename, resize, and change visual
characteristics such as color and font for items and groups. With
the mark associated with an item, the user can navigate to the base
layer if necessary, or examine the mark’s properties and browse
context information (such as containing paragraph) from within
RIDPad via a reusable Context Browser we have built.

The operations RIDPAD affords are at the level of items and
groups. However, we have seen the need to query and manipulate
a RIDPad document and its base documents as a whole. For
example, possible queries over the RIDPad document in Figure 1
include:

Q1: List base documents used in this RIDPad document.
Q2: Show abstracts of papers related to Garlic.
Q3: Create an HTML table of contents from the groups and items.

Query Q1 examines the paths to base documents of marks associ-
ated with items in the RIDPad document. Q2 examines the
context of marks of items in the group labeled ‘Schematic
Heterogeneity.’ Q3 transforms the contents of the RIDPad docu-
ment to another form (table of contents). In general, queries such

as these operate on both superimposed information and base
information. Consequently, we call them bi-level queries.

Figure 1: A RIDPad document.

There are many possible choices on how to present the contents of
superimposed documents (such as the RIDPad document in
Figure 1) and base documents for querying. We could make the
division between the superimposed and base documents obvious
and let the user explicitly follow marks from superimposed
information to base information. Instead, our approach is to
integrate a superimposed document’s contents and related base
information to present a uniform representation of the integrated
information for querying.

The rest of this paper is organized as follows: Section 2 provides
an overview of SPARCE. Section 3 provides an overview of bi-
level query systems and describes a naïve implementation of a bi-
level query system along with some example bi-level queries.
Section 4 discusses some applications and implementation
alternatives for bi-level query systems. Section 5 briefly reviews
related work. Section 6 summarizes the paper.

We use the RIDPad document in Figure 1 for all examples in this
paper.

2. SPARCE OVERVIEW
The Superimposed Pluggable Architecture for Contexts and
Excerpts (SPARCE) facilitates management of marks and context
information in the setting of superimposed information
management [12]. A mark is an abstraction of a selection in a
base document. Several mark implementations exist, typically one
per base type (PDF, HTML, Excel, and so on). A mark
implementation chooses an addressing scheme appropriate for the
base type it supports. For example, an MS Word mark
implementation uses the starting and ending character index of a
text selection, whereas an MS Excel mark uses the row and
column names of the first and last cell in the selection. All mark
implementations provide a common interface to address base
information, regardless of base type or access protocol they

support. A superimposed application can work uniformly with
any base type due to this common interface.

Context is information concerning a base-layer element. Presen-
tation information such as font name, containment information
such as enclosing paragraph and section, and placement
information such as line number are examples of context
information. An Excerpt is the content of a marked base-layer
element. (We treat an excerpt also as a context element.) Figure 2
shows the PDF mark corresponding to the item ‘Goal’ (of the
RIDPad document in Figure 1) activated. The highlighted portion
is the marked region. Table 1 shows some of the context elements
for this mark.

Figure 2: A PDF mark activated.

Figure 3 shows the SPARCE architecture reference model. The
Mark Management module is responsible for operations on marks
(such as creating and storing marks). The Context Management
module retrieves context information. The Superimposed
Information Management module provides storage service to
superimposed applications. The Clipboard is used for inter-
process communication.

Table 1: Some context elements of a PDF mark.

Element name Value

Excerpt provide applications and users
with … Garlic system

Font name Times New Roman
Enclosing paragraph Loosely speaking, the goal …
Section Heading Garlic Overview

SPARCE uses mediators [13] called context agents to interact
with different base types. A context agent is responsible for re-
solving a mark and returning the set of context elements
appropriate to that mark. A context agent is different from me-
diators used in other systems because it only mediates portions of
base document a mark refers to. For example, if a mark refers to
the first three lines of a PDF document, the mark’s context agent
mediates those three lines and other regions immediately around
the lines. A user could retrieve broader context information for
this mark, but the agent will not do so by default.

Figure 3: SPARCE architecture reference model.

A superimposed application allows creation of information ele-
ments (such as annotations) associated with marks. It can use an
information model of its choice (SPARCE does not impose a
model) and the model may vary from one application to another.
For example, RIDPad uses a group-item model (simple nesting),
whereas the Schematics Browser, another application we have
built, uses an ER model [2, 12]. The superimposed model may be
different from any of the base models. A detailed description of
SPARCE is available in our previous work [12].

3. BI-LEVEL QUERY SYSTEM
A bi-level query system allows a superimposed application and its
user to query the superimposed information and base information
as a whole. User queries are in a language appropriate to the
superimposed model. For example, XQuery may be the query
language if the superimposed model is XML (or a model that can
be mapped to XML), whereas SQL may be the query language if
superimposed information is in the relational model.

Figure 4: Overview of a bi-level query system.

Figure 4 provides an overview of a bi-level query system. An oval
in the figure represents an information source. A rectangle
denotes a process that manipulates information. Arrows indicate
data flow. The query processor accepts three kinds of
information—superimposed, mark, and context. Model trans-
formers transform information from the three sources in to
model(s) appropriate for querying. One of these transformers, the
context transformer, is responsible for transforming context in-
formation. We restrict bi-level query systems to use only one
superimposed model at a time, for practical reasons. Choosing a
query language and the model for the result can be hard if
superimposed models are mixed.

Base Info 1

Base Info n

Context
Agents

Model Transformers

Mark
Info

Superimposed
Info

Query
Processor

Superimposed
Application

Superimposed
Information

Management

Mark
Management

Context
Management

Clipboard

Base
Application

Result

Query

3.1 Implementation
We have implemented a naïve bi-level query system for the XML
superimposed model. We have developed a transformer to convert
RIDPad information to XML. We have developed a context
transformer to convert context information to XML. We are able
to use mark information without any transformation since
SPARCE already represents that information in XML. User que-
ries can be in XPath, XSLT, and XQuery. We use Microsoft’s
XML SDK 4.0 [10] and XQuery demo implementation [11] to
process queries.

We use three XML elements to represent RIDPad information in
XML—<RIDPadDocument> for the document, <Group> for
a group, and <Item> for an item. For each RIDPad item, the
system creates four children nodes in the corresponding <Item>
element. These children nodes correspond to the mark, container
(base document where the mark is made), application, and
context. We currently transform the entire context of the mark.
The XML data is regenerated if the RIDPad document changes.

Figure 5: Partial XML data from a RIDPad document.

Figure 5 shows partial XML data generated from the RIDPad
document in Figure 1. It contains two <Group> elements (corre-
sponding to the two groups in Figure 1). The ‘Garlic’ element
contains four <Item> elements (one for each item in that group
in Figure 1). There is also an <Item> element for the group-less
item CLIO. The <Item> element for ‘Goal’ is partially expanded
to reveal the <Mark>, <Container>, <Application>, and
<Context> elements it contains. Contents of these elements are
not shown.

3.2 Example Bi-level Queries
We now provide bi-level query expressions for the queries Q1 to
Q3 listed in Section 1.

Q1: List base documents used in this RIDPad document.

This query must retrieve the path to the base document of the
mark associated with each item in a RIDPad document. The
following XQuery expression does just that. The Location
element in the Container element contains the path to the
document corresponding to the mark associated with an item.

<Paths> {FOR $l IN
document("source")//Item/Container/Location
RETURN <Path>{$l/text()}</Path>
} </Paths>

Q2: Show abstracts of papers related to Garlic.

This query must examine the context of items in the group labeled
‘Garlic.’ The following XPath expression suffices. This
expression returns the text of a context element whose name
attribute is ‘Abstract’, but only for items in the required group.

//Group[@name='Garlic']/Item/Context//Elemen
t[@name='Abstract']/text()

Q3: Create an HTML table of contents from the groups and items.

We use an XSLT style-sheet to generate a table of contents (TOC)
from a RIDPad document. Figure 6 shows the query in the left
panel and its results in the right panel. The right panel embeds an
instance of MS Internet Explorer. The result contains one list item
(HTML LI tag) for each group in the RIDPad document. There is
also one list sub-item (also an HTML LI tag) for each item in a
group. The group-less item CLIO is in the list titled ‘Other Items.’
A user can save the HTML results, and open it in any browser
outside our system.

Figure 6: RIDPAD document transformed to HTML TOC.

The HTML TOC in Figure 6 shows that each item has a hyperlink
(HTML A tag) attached to it. A hyperlink is constructed using a
custom URL naming scheme and handled using a custom handler.
Custom URLs are one means of implementing Capability 5 iden-
tified in Section 1.

4. DISCUSSION
The strength of the current implementation is that it retrieves
context information for only those parts of base documents that
the superimposed document refers to (via marks). Interestingly,
the same is also its weakness: it retrieves context information for
all parts of the base documents the superimposed document refers
to, regardless of whether executing a query requires those ele-
ments. For example, only Query Q2 looks at context information
(Q1 looks only at container information, Q3 looks at superim-
posed information and mark information). However, the XML
data generated includes context information for all queries. Gen-
erating data in this manner is both inefficient and unnecessary—
information may be replicated (different items may use the same
mark), and context information can be rather large (the size of the
complete context of a mark could exceed the size of its docu-

ment), depending on what context elements a context agent
provides. It is possible to get the same results by separating
RIDPad data from the rest and joining the various information
sources. Doing so preserves the layers, and potentially reduces the
size of data generated. Also, it is possible to execute a query in-
crementally and only generate or transform data that qualifies in
each stage of execution.

Figure 7 gives an idea of the proposed change to the schema of
the XML data generated. Comparing with the Goal Item element
of Figure 5, we see that mark, container, application, and context
information are no longer nested inside the Item element. Instead,
an <Item> element has a new attribute called markID. In the
revised schema, the RIDPad data, mark, container, application,
and context information exist independently in separate
documents, with references linking them. With the revised
schema, no context information would be retrieved for Query Q1.
Context information would be retrieved only for items in the
‘Schematic Heterogeneity’ group when Q2 is executed.

Figure 7: XML data in the revised schema.

Preserving the layers of data has some disadvantages. A major
disadvantage is that a user will need to use joins to connect data
across layers. Such queries tend to be error-prone, and writing
them can take too much time and effort. A solution would be to
allow a user to write bi-level queries as they currently do (against
a schema corresponding to the data in Figure 5), and have the
system rewrite the query to match the underlying XML schema
(as in Figure 7). That is, user queries would actually be expressed
against a view of the actual data. We are currently pursuing this
approach to bi-level querying.

Our current approach of grabbing context information for all
marks could be helpful in some cases. For example, if a query
workload ends up retrieving context of all (or most) marks, the
current approach is similar to materializing views, and could lead
to faster overall query execution.

The current implementation does not exploit relationships be-
tween superimposed information elements. For example, Figure 8
shows the RIDPad document in Figure 1 enhanced with two rela-
tionships ‘Uses’ and ‘Addresses’ from the item CLIO. A user may
exploit these relationships, to pose richer queries and possibly
recall more information. For example, with the RIDPad document
in Figure 8, a user could now pose the following queries: What
system does CLIO use? How is CLIO related to SchemaSQL?

Our initial use anticipated for bi-level queries was to query su-
perimposed and base information as a whole, but we have noticed
that superimposed application developers and users could use the

capability to construct and format (on demand) superimposed
information elements themselves. For example, a RIDPad item’s
name may be a section heading. Such a representation of an item
could be expressed as the result of a query or a transformation.

Figure 8: A RIDPad document with relationships.

Bi-level queries could also be used for repurposing information.
For example, Query Q3 could be extended to include the contents
of items (instead of just names) and transform the entire RIDPad
document to HTML (like in Figure 6). The HTML version can
then be published on the web.

We have demonstrated bi-level queries using XML query
languages, but superimposed applications might benefit from
other query languages. The choice of the query language depends
largely on the superimposed information model (which in turn
depends on the task at hand). More than one query language may
be appropriate for some superimposed information models, in
some superimposed applications. For example, both CXPath [3]
and XQuery may be appropriate for some applications that use the
XML superimposed model.

The base applications we have worked with so far do not
themselves have query capabilities. If access to context or a selec-
tion over context elements can be posed as a query in a base
application, we might benefit from applying distributed query-
processing techniques. Finally, the scope of a bi-level query is
currently the superimposed layer and the base information acces-
sible via the marks used. Some applications might benefit from
including marks generated automatically (for example, using IR
techniques) in the scope of a query.

5. RELATED WORK
SPARCE differs from mediated systems such as Garlic [4] and
MIX [1]. Sources are registered with SPARCE simply by the act
of mark creation in those sources. Unlike in Garlic there is no
need to register a source and define its schema. Unlike MIX,
SPARCE does not require a DTD for a source.

METAXPath [5] allows a user to attach metadata to XML ele-
ments. It enhances XPath with an ‘up-shift’ operator to navigate
from data to metadata (and metadata to meta-metadata, and so
on). A user can start at any level, but only cross between levels in
an upwards direction. In our system, it is possible to move both
upwards and downwards between levels. METAXPath is
designed to attach only metadata to data. A superimposed
information element can be used to represent metadata about a
base-layer element, but it has many other uses.

CXPath [3] is an XPath-like query language to query concepts,
not elements. The names used in query expressions are concept
names, not element names. In the CXPath model there is no
document root—all concepts are accessible from anywhere. For
example, the CXPath expression ‘/Item’ and ‘Item’ are equiva-
lent. They both return all Item elements when applied to the XML
data in Figure 5. The ‘/’ used for navigation in XPath follows a
relationship (possibly named) in CXPath. For example, the ex-
pression “/Item/{Uses}Group” returns all groups that are related
to an item by the ‘Uses’ relationship when applied to an XML
representation of the RIDPad in Figure 8. CXPath uses predefined
mappings to translate CXPath expressions to XPath expressions.
There is one mapping for each concept name and for each direc-
tion of every relationship of every XML source. In our system,
we intend to support multiple sources without predefined map-
pings, but we would like our query system to operate at a
conceptual level like CXPath does.

As discussed in Section 4, preserving the layers of data, yet al-
lowing a user to express queries as if all data is in one layer
means queries are expressed against views. Information Manifold
[7] provides useful insight in to how heterogeneous source may be
queried via views. That system associates a capability record with
each source to describe its inputs, outputs, and selection capabili-
ties. We currently do not have such a notion in our system, but we
expect to consider source descriptions in the context of distributed
query processing mentioned in Section 4.

6. SUMMARY
Our existing framework for superimposed applications supports
examination and manipulation of individual superimposed and
base information elements. More global ways to search and ma-
nipulate information become necessary as the size and number of
documents gets larger. A bi-level query system is a first step in
that direction. We have an initial implementation of a query
system, but still have a large space of design options to explore.

7. ACKNOWLEDGMENTS
This work was supported in part by US NSF Grant IIS-0086002.
We thank all reviewers.

8. REFERENCES
[1] Baru, C., Gupta, A., Ludäscher, B., Marciano, R.,

Papakonstantinou, Y., Velikhov, P., and Chu, V. XML-

Based Information Mediation with MIX. In Proceedings of
the SIGMOD conference on Management of Data
(Philadelphia, June, 1999). ACM Press, New York, NY,
1999, 597-599.

[2] Bowers, S., Delcambre, L. and Maier, D. Superimposed
Schematics: Introducing E-R Structure for In-Situ
Information Selections. In Proceedings of ER 2002
(Tampere, Finland, October 7-11, 2002). Springer LNCS
2503, 2002. 90–104.

[3] Camillo, S.D., Heuser, C.A., and Mello, R. Querying
Heterogeneous XML Sources through a Conceptual Schema.
In Proceedings of ER 2003 (Chicago, October 13-16, 2003).
Springer LNCS 2813, 2003. 186–199.

[4] Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody,
W.F., Fagin, R., Flickner, M., Luniewski, A.W., Niblack,
W., Petkovic, D., Thomas, J., Williams, J.H., and Wimmers,
E.L. Towards heterogeneous multimedia information
systems: The Garlic approach. IBM Technical Report RJ
9911, 1994.

[5] Dyreson, C.E., Bohlen, M.H., and Jensen, C.S. METAXPath.
In Proceedings of the International Conference on Dublin
Core and Metadata Applications (Tokyo, Japan, October
2001). 2001, 17-23.

[6] Halasz, F.G., and Schwartz, F. The Dexter Hypertext
Reference Model. Communications of the ACM, 37, 2, 30-
39.

[7] Levy, A.Y., Rajaraman, A., and Ordille, J.J. Querying
heterogeneous information sources using source descriptions.
In Proceedings of VLDB (Bombay, India 1996). 251-262.

[8] Maier, D., and Delcambre, L. Superimposed Information for
the Internet. In Informal Proceedings of WebDB ’99
(Philadelphia, June 3-4, 1999). 1-9.

[9] Microsoft. COM: The Component Object Model
Specification, Microsoft Corporation. 1995.

[10] Microsoft. MS XML 4.0 Software Development Kit.
Microsoft Corporation. Available online at
http://msdn.microsoft.com/

[11] Microsoft. XQuery Demo. Microsoft Corporation. Available
online at http://xqueryservices.com/

[12] Murthy, S., Maier, D., Delcambre, L., and Bowers, S.
Putting Integrated Information in Context: Superimposing
Conceptual Models with SPARCE. In Proceedings of the
First Asia-Pacific Conference of Conceptual Modeling
(Dunedin, New Zealand, Jan. 22, 2004). 71-80.

[13] Wiederhold, G. Mediators in the architecture of future
information systems. IEEE Computer, 25, 3 (March 1992).
38–49.

