
Scalable Dissemination: What’s Hot and What’s Not

J. Beaver, N. Morsillo,K. Pruhs, P. Chrysanthis�
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260

fbeaver,nwm1,kirk,panosg@cs.pitt.edu

V. Liberatorey

Division of Computer Science
Case Western Reserve University

Cleveland, Ohio 44106-7071
fvincenzo.liberatoreg@case.edu

ABSTRACT
A major problem in web database applications and on the Inter-
net in general is the scalable delivery of data. One proposed so-
lution for this problem is a hybrid system that uses multicast push
to scalably deliver the most popular data, and reserves traditional
unicast pull for delivery of less popular data. However, such a hy-
brid scheme introduces a variety of data management problems at
the server. In this paper we examine three of these problems: the
push popularity problem, the document classification problem, and
the bandwidth division problem. The push popularity problem is
to estimate the popularity of the documents in the web site. The
document classification problem is to determine which documents
should be pushed and which documents must be pulled. The band-
width division problem is to determine how much of the server
bandwidth to devote to pushed documents and how much of the
server bandwidth should be reserved for pulled documents. We
propose simple and elegant solutions for these problems. We re-
port on experiments with our system that validate our algorithms.

1. INTRODUCTION
The Web has brought massive amounts of information to every-

one’s fingertips, changing forever the way we learn the news, per-
form research, do business, and deal with disasters. At the same
time, widespread interconnectivity has resulted in Internet hot spots
and flash crowds, and poses a pressing scalability problem. The
scalability of data dissemination is particularly important exactly
at the time when scalable data delivery is most important. Exam-
ples in the popular press include: news about the terrorist attacks at
msnbc.com during 9/11/2001, virus patches from mcafee.com
during the recent Slammer virus, and weather reports at the Federal
Emergency Management Agency fema.gov during hurricane Is-
abel around September 18, 2003.

Scalable data delivery can be ensured with multicast push, which
employs point-to-multipoint communication (multicast) and sends
documents from the server to clients in the absenceof explicit client
requests (push) [1, 2, 3, 4, 12, 25, 26, 27]. Multicast push is scal-
able in that the addition of new clients does not change the server
workload and the client-perceived response time. Multicast push
can be combined with traditional unicast pull in a hybrid data dis-
semination scheme [3, 7, 25]. In the hybrid method, the document
set is partitioned into two groups: the multicast push documents

�Supported in part by NSF grants CCR-0098752, ANI-0123705,
and ANI-0325353.
ySupported in part by NSF grant ANI-0123929.

Copyright is held by the author/owner. Seventh International Workshop on
the Web and Databases (WebDB 2004), June 17-18, 2004, Paris, France.

and the unicast pull documents. The former are cyclically and re-
peatedly transmitted on the multicast push channel. The latter are
delivered on the unicast pull channel upon client requests. In ei-
ther case, end-users request documents as usual with any standard
browser which forwards them to a client-side server extension (i.e.,
special client proxy) that handles multicasting.

Hybrid data dissemination can be evaluated along various perfor-
mance metrics, and much work has focused on the average server-
side delay before a document is transmitted (e.g., [25]). Client-side
latency can be minimized by assigning multicast push to deliver
the most popular (hot) data and unicast pull to deliver less popular
(cool) data [25]. The resulting hybrid scheme strives for the scal-
ability of multicast push and avoids clogging a multicast channel
with cool data items [1, 13]. However, the hybrid scheme intro-
duces three inter-related data management problems at the server,
and the primary contribution of this paper is to propose an inte-
grated solution for these problems.

In the hybrid scheme, the server must dynamically assign each
documents either to the unicast pull channel or to the multicast push
channel (document classification) [25]. Furthermore, the server
must also partition dynamically its bandwidth between unicast pull
and multicast push (bandwidth division). Document classification
and bandwidth division are inter-related issues because a given band-
width division determines the performance of a document classifi-
cation choice and, conversely, a given document classification de-
termines a bandwidth split that optimizes performance. In turn,
both document classification and bandwidth division depend on the
popularity of data items because download latency is smaller when
hot items are assigned to multicast push, cool items to unicast pull,
and the bandwidth is divided appropriately between the two chan-
nels. Therefore, the server must estimate the document popularity
(push popularity problem). The estimation of document popularity
is complicated by the fact that no requests are made by clients for
multicast push documents. In particular, if the popularity wanes for
a specific document and that document was on the multicast push,
the shift in client interests is not reflected in request logs. In turn,
the server would not know that it is time to demote a document to
the unicast pull channel.

In this paper, we give an integrated algorithm for solving simul-
taneously and to near-optimality the bandwidth division and docu-
ment classification problems. Our algorithm is evaluated through
emulations on a comprehensive middleware platform for scalable
data dissemination [23]. The algorithm exhibited lower average la-
tency than previous schemes. The underlying reason is that if doc-
ument selection is addressed separately from bandwidth division, a
certain bandwidth split can be fixed to a level that is suboptimal for
a certain assignment of documents to channels. More generally, the
performance trade-offs differ quantitatively and qualitatively under



the combined scheme. For example, the assignment led to multi-
cast push latency that is significantly faster than pull latency due to
the higher relative popularity of multicast items over unicast docu-
ments. Furthermore, the paper also presents and quantifies analyti-
cally the accuracy of a simple document popularity algorithm that
is based on random sampling.

In section 2 we discuss our proposed algorithms. In Section 3,
we report on the experimental validation of our algorithms. In sec-
tion 4 we survey some work related to our own and section 5 sum-
marizes our observations and contributions.

2. ALGORITHMS AND ANALYSIS

2.1 Document Classification and Bandwidth
Division

To understand the algorithm for document classification and band-
width division, it is first necessary to understand the different na-
ture of average latency for the multicast push and for the unicast
pull channels. The average latency for documents on the multicast
push channel is roughly linear in the number of documents on this
channel. Specifically, the average latency for a document on the
multicast push channel is half of the period of the broadcast cycle
since we assume that documents are broadcast sequentially. Note
that this assumes that the time to broadcast a single document is
negligible with respect to the period of the broadcast cycle. How-
ever, the delays for pulled documents are radically different from
those of pushed documents. If document i is assigned to unicast
pull, a client request for i is queued at the server for transmission.
Let Si be the size of document i. Basic queuing theory tells us that
the corresponding queuing delay is either O�Si� or unbounded, de-
pending on whether the server load is less than 1 or not. Thus, to
minimize average latency, the server should require as many doc-
uments as possible be pulled, as long as the load for the pulled
documents is bounded by a constant less than 1.

Our solution to document classification and bandwidth division
is to use an integrated algorithm that minimizes average latency.
The starting point is a method suggested by [6] that minimizes the
bandwidth B to achieve a target latency L. The known method is
not directly applicable to document classification and bandwidth
division because our goal, on the contrary, is to minimize the la-
tency L given a fixed amount of available server bandwidth B.
However, the previous method will be useful as a component of
the final algorithm.

For the purpose of analysis, client requests follow a Poisson pro-
cess in which document i is requested with probability pi and the
aggregate request rate is �. The popularity profile pi and the rate
� can be determined by the push popularity algorithm described in
Section 2.2. Algorithm 1 uses a target average latency L. Its goal
is, as in [6], to partition the documents between unicast pull and
multicast push and to split the system bandwidth so as to minimize
the system bandwidth B required to achieve latency L. If docu-
ment i is assigned to the pull channel, it will use bandwidth �piSi .
If document i is assigned to the push channel, it will use bandwidth
Si�L, which is also the rate at which the document must be broad-
cast to give worst-case response time L. It was then stated [6] that
a document should be pushed if

�piSi �
Si
L

� (1)

Algorithm 1 follows this approach. However, as we are inter-
ested in the average latency of a pushed document instead of the
worst-case latency, we need to make the following modification to
equation (1). The unicast pull term �piSi in (1) is the bandwidth

Parameter Description
n number of documents
� observed request rate �
� pull over-provisioning factor
L current required latency
B total available system bandwidth
S array of document sizes Si
p array of document probabilities pi
� tolerance factor

Table 1: Parameters for Algorithms 1 and 2.

required to obtain average latency L, and thus the multicast push
bandwidth also needs to be the bandwidth required to achieve an
average latency of L for the comparison to be meaningful. In this
case, the bandwidth required by this document on the push channel
to achieve average-case latency L is S i���L�. Thus a document
should be pushed if �piSi � Si���L�. The resulting subroutine is
shown below as Algorithm 1 and its parameters are summarized in
Table 1.

Algorithm 1 tryLatency

Require: n� �� L� p as defined in Table 1
Ensure: Returns the number k of items pushed given that average

latency of L is required
1: while max�min � � do
2: k � �max � min���
3: if (pk�L� � ��� then
4: min � k
5: else
6: max � k
7: end if
8: end while
9: Return k

The bandwidth for the push channel is now
P

i�pi�����L� Si���L�

and the bandwidth for the unicast requests is
P

i�pi�����L�
�piSi .

In particular, if L increases, while all other variables remain fixed,
then more documents are pushed, an observation that will be used
to derive the final algorithm.

The second and more substantial modification to the previous
argument is due to the mismatch between the objectives of Algo-
rithm 1 and the desired objectives for bandwidth division and doc-
ument selection. Algorithm 1 minimizes the amount of required
bandwidth to achieve a fixed L, whereas our goal is to minimize L
given a fixed deployed bandwidth B. In some sense, our problem
is the dual of the one that Algorithm 1 solves.

Algorithm 2 solves the bandwidth division and document selec-
tion problems, and uses Algorithm 1 as a subroutine. The algo-
rithm employs a parameter � � � that measures the target level of
over-provisioning for the pull channel. More precisely, the actual
bandwidth we reserve for pull is � times what an idealized estimate
predicts. Queuing theory asserts that � � � guarantees bounded
queuing delays, whereas � � � leads to infinite queuing delays.
As such, the parameter � can also be thought of as a safety margin
for the pull channel. The algorithm also uses a parameter � � �,
which is an arbitrarily small positive number, and finds a solution
that has latency within � of the optimum for the given bandwidth
and popularities.

Algorithm 1 assumes that documents have been sorted in non-
increasing order of popularity, i.e., pi � pi�� (� � i � n). It can
be easily seen that if i is pushed, then j � i should be pushed as
well. Then, the problem becomes that of finding a value of k such



Algorithm 2 Bandwidth Division and Document Classification
Require: n� ����B� S� p, and � as defined in Table 1, and p i �

pi�� (� � i � n)
Ensure: k is the optimal number of documents on the push chan-

nel, pullBW is the optimal pull bandwidth, pushBW is the op-
timal push bandwidth

1: for i � �� � � � � n do
2: rspti � rspti�� � piSi�
3: sizeTotali � sizeTotali�� � Si
4: end for
5: lMax � sizeTotaln�B
6: lMin � �
7: while lMax� lMin � � do
8: L� �lMax � lMin���
9: k � tryLatency�L� p� �� n�

10: pullBW � ��rsptn � rsptk�
11: pushBW� B � pullBW
12: if pushBW � �sizeTotalk���L�� then
13: lMax � L
14: else
15: lMin � L
16: end if
17: end while

that the multicast push set f�� �� � � � � kg minimizes the latency L
given a certain bandwidth B and pull over-provisioning factor �.
The optimal value k� can be found by trying all possible values
of L, computing the document k that achieves L with Algorithm
1, and checking that this value of k satisfies the bandwidth require-
ments. The pull bandwidth requirement is �

Pn
i�k�� �piSi , which

leaves pushBW � B � �
Pn

k�� �piSi for the push channel, and

average latency for the pushed documents of
Pk

i�� Si��pushBW.
If this computed average latency for the pushed documents is greater
than L, then L needs to be increased, otherwise L needs to be de-
creased.

Algorithm 2 follows this approach but with two optimizations.
In the first place, the algorithm performs a binary search over all
possible values of L and stops when the interval for L is bounded
by the tolerance �. Moreover, the algorithm pre-computes the sumsPk

i�� �piSi and
Pk

i�� Si in the arrays rspt and the sizeTotal re-
spectively (Lines 1–4). The purpose of these computations is to use
the totals in the place of the sums in the bandwidth computations.
Because of this optimization, the portion of the algorithm before
the binary search runs in linear time. The maintenance of the rspt
and sizeTotal arrays can be implemented in logarithmic time per
query using standard augmented binary tree techniques [8]. Thus,
the running time of algorithm 2 is O�max�n� log�

Pn
i�� Si
B�

���. We
expect that as a practical matter that the running time will be O�n�.

2.2 Report Probabilities
Document selection and bandwidth division rely on estimates p

of document popularity. The values of p can be estimated by sam-
pling the client population as follows. The server publishes a report
probability si for each pushed document i. Then, if a client wishes
to access document i, it submits an explicit request for that doc-
ument with probability si. In principle, clients would not need to
submit any request for push documents, but if they do send requests
with probability si, the server can use those requests to estimate
pi . At the same time, the report probability si should be small
enough that server is almost surely not going to be overwhelmed
with requests for pushed documents. In particular, we consider

the objective of minimizing the maximum relative inaccuracy ob-
served in the estimated popularities of the pushed documents. In
this case, we show analytically that each report probability should
be set inversely proportional to the predicted access probability for
that document.

First, the server calculates the rate � of incoming reports that it
can tolerate. Presumably, � is approximately equal to the rate that
the server can accept TCP connections minus the rate of connection
arrivals for pulled documents. Therefore, the value of � can be
estimated from the access probabilities and the current request rate,
all scaled down by a safety factor to give the server a little leeway
for error. Then, the si’s have to be set such that

Pk
i�� �pisi � �,

where documents �� � � � k are on the push channel. The expected
number of reports 	i that the server can expect to see for i over
a unit time period is �pisi. Using standard Chernoff bounds, the
probability that number of reports is more than ���
�	i is roughly

e
��i�

�

� , and that the probability that number of reports is less than

���
�	i is roughly e
��i�

�

� . If the goal is to minimize the expected
maximum relative inaccuracy of the reports, all of the upper tail
bounds should be equal and all of the lower tail bounds should be
equal. That is, all 	i should be equal, or equivalently it should
be the case that for all i, � � i � k, si � �

�pik
. Hence, each

document should have a report percentage inversely proportional
to its access probability.

3. EVALUATION
The objective of the experiments is to validate the algorithms

introduced in Section 2. In particular, the development of Algo-
rithm 2 made several idealized assumptions about the environment
and these assumptions need to be investigated experimentally. The
choice of � is a major parameter in the following experiments. We
also wish to verify that lower delays are achieved by an integrated
algorithm that does both document classification and bandwidth di-
vision. Finally, the scalability of various popularity estimation al-
gorithms remains to be verified.

3.1 Methodology
The experimental analysis leverages on an existing prototype

middleware. The middleware supports the hybrid dissemination
scheme utilizing multicast push and unicast pull. It acts as a reverse-
proxy to a Web server for the delivery of documents that are ma-
terialized views [23]. A simulated client uses the middleware and
generates Poisson requests for documents with a Zipf probability
distribution. In this paper, we report on the case in which the size of
the documents is fixed to 0.5KB, and we have additional evidence
suggesting that results are fundamentally the same with variable
sized documents.

An objective of this evaluation was to isolate algorithm perfor-
mance from network factors, such as network congestion or routing
transients. On the other hand, scalability is asserted when requests
are generated by a large number of clients. Our solution was to
run both the client and server on the same machine so that network
effects would not be visible. (Although the emulation runs on a sin-
gle machine, the middleware is capable of running on a distributed
environment [23].) Aggregate requests from multiple clients was
simulated by a background request filler. The filler simulates a
specified number of clients, and sends requests to the server. The
requests by the filler are treated identically to those made by an-
other distinguished client, except that we record latency only for
the requests from the distinguished client. All experiments were
run for 10000 requests and figures reflect the average statistics from
these runs. The computer used in these simulations was a 2.0Ghz



dual processor machine with 1.2GB of RAM and running Linux
Redhat Version 8.0. JRMS was used for multicasting [24].

Parameter Value Default
Document Size 0.5K bytes 0.5K bytes
Zipf parameter � 1.1 - 2.0 1.5
System Bandwidth 100000 bytes/sec 100000 bytes/sec
Request rate � 250 / sec 250/sec
Total items n 100 - 10000 1000
Total Requests Made 10000 10000
� 1.1 - 4.2 2
� .005 .005

Table 2: Simulation Parameters

Table 2 describes the parameters used in the experiments. Al-
though we explored the algorithm sensitivity to parameter values
within the stated range, we report for compactness only on the de-
fault values unless otherwise noted.

3.2 Document Classification and Bandwidth
Division Evaluation

Figure 1 shows the effects of various values of � on the average
latency of Algorithm 2. The curve in Figure 1 is jagged because an
infinitesimal change in � can have a discrete effect in the number
of items pushed. Figure 1 shows that the value of � that minimizes
average latency is between 2.0 to 3.0. We adopt � � ��� in the rest
of the paper — although this is not the actual minimum, any value
in the range produces similarly good results. Note that as� changes
in figure 1 our system adjusts the bandwidth division and document
classification to maintain optimality. This in part explains why the
average latency is near optimal for a relatively wide range of �.

Figure 2 can be interpreted as a brute force search for a good
bandwidth split and document classification by trying several closely
spaced values of k and pushBW. In the chart legend, the first num-
ber in the bandwidth split refers to pull. In addition to the points
plotted in the figure, we verified that if less than half of the band-
width was devoted to pull, the latency was suboptimal. In this sce-
nario, Algorithm 2 assigns the most popular 7 documents on the
push channel, and allocates 63% percent of the bandwidth to push.
The figure shows the algorithm’s outcome with a circular point and
an arrow pointing to it. The solution produced by our algorithm is
better than any other point in the diagram. More specifically, our
algorithm chose a split of 63/37 and the closest brute force curve
in the figure is the 65/35 curve. The 65/35 line was also the low-
est in the graph. Algorithm 2 chose k � � point as the number
of push documents, which is also the minimum point on the 65/35
curve. Thus, Algorithm 2 chose a better bandwidth split than the
brute force approach and a document classification that was just as
good.

LetG�k� be the average latency if the k most popular documents
are placed on the push channel. The function G�k� is a weighted
average of the average latency for pushed documents and the av-
erage latency for pulled documents. A graph showing an ideal-
ized G�k� from [25] is shown in Figure 3. The function G�k� has
a unique local minimum, which can be be found by local search
[25]. Figure 3 shows that the minimum of G�k� is to the right of
the intersection of the push and pull curves. In this case, pulled
documents would have lower latency than pushed documents. The
actual curve that we obtained from our experiments is shown in
Figure 4. Notice that the minimum of G�k� is to the left of the in-
tersection of the push and pull curves, and thus pushed documents
have lower latencies than pulled documents. Further, the minimum
of G�k� occurs at a relatively small value of k, and thus compli-

Figure 1: Effects of various� values on average latency

Figure 2: Demonstrating the optimality of Algorithm 2 for doc-
ument classification and bandwidth division. The arrow points
to the single point found by the algorithm.

cated hierarchical schemes for the push channel may not be useful
in this setting. The location of the minimum is due to two comple-
mentary reasons. First, the most popular items are chosen for push
and are also those to which a Zipf (or Zipf-like) distribution gives
substantially more weight. Therefore, if a solution favors multicast
push, it will also have the largest impact on the globally average de-
lays. Second, the unicast pull curve levels off and, from that point
on, the exact choice of k has little impact on pull delay. In other
words, pull delays are practically minimized at the point �k where
the pull curve flattens out. However, �k precedes the intersection
of the pull curve with the push curve, and so the overall minimum
occurs before that intersection.

In conclusion, Algorithm 2 was shown to be better than the best
value returned by a brute force search. Furthermore, the integrated
algorithm led to a behavior of the push and pull curves that differs
qualitatively and quantitatively from previously published work,
e.g., in terms of the relative behavior of push and pull delays.

3.3 Report Probabilities Evaluation
In order to determine the usefulness of our proposed push pop-

ularity scheme, we compare it to a solution found in a comparable
work to our own. The solution for the push popularity problem
proposed in [25] was to occasionally drop each pushed document i
off of the push channel so that clients would have to make explicit
requests to i. However, there is a danger that these explicit requests
for i could overload the server. Thus, in [25] it was recommended
that i should be dropped as short of a period of time as possible.



Figure 3: Relation of Push and Pull latencies as number of
items pushed is changed, according to Stathatos et al.

Figure 4: Relation of Push and Pull latencies as number of
items pushed changes according to our experiments

The shortest possible time the the document can be dropped is one
broadcast cycle. However, we show here that even such a short drop
disrupts the server, while our proposed method does not suffer from
such disruptions.

Figure 5 shows the average latencies around the broadcast cycle
T when the most popular item is dropped from the push channel.
The figure shows a performance degradation for about 5 broadcast
cycles. Basically, looking at the graph shows that before the drop
occurs, the system is in a steady state of response times. However,
once the item is dropped down the clients are no longer getting
requests off the push channel. Instead, they must make requests
directly to the server. Based on the Zipf distribution, as mentioned
earlier, the bulk of requests were for items that were on the push
channel. Therefore, dropping an item down causes a brief but sub-
stantial influx of requests to the server. This brief surge causes
response times for requests during the given broadcast cycle and a
few subsequent cycles to suffer while the server recovers and re-
turns to its steady state.

Figure 6 shows the average latency over the next 5 broadcast cy-
cles when the ith most popular document is dropped from the push
channel for one broadcast cycle. The flat line represents the av-
erage response time using our method for push popularity. If the
most popular document is dropped, then we see a 35% increase in
average latency over the next 5 broadcast cycles. If the 6th most
popular document is dropped, we see an 8% increase in average
latency over the next 5 broadcast cycles. This increase is in com-
parison to using the simple yet effective scheme we proposed of

Figure 5: Effect on latency of demoting an item.

Figure 6: Drop down method versus our probability method.

simply including a popularity estimator with the broadcast index.
In fairness, our proposed method has the disadvantages that it

requires extra space in the broadcast index and it slightly increases
the request rate at the server during all broadcast cycles.

4. RELATED WORK
Scalable data delivery has often been approached through data

caching and replication such as, for example, in client or proxy
caches [11, 16], server-side caches [10], and content-delivery net-
works [22]. Moreover, back-end methods are deployed between a
web server and a back-end database server and include web server
cache plug-in mechanisms and asynchronous caches [5, 17, 18,
19]. These approaches follow the traditional unicast pull paradigm,
whereby data is delivered from the server to each client individu-
ally on demand. In turn, the unicast pull approach severely limits
the inherent scalability of data delivery.

The document classification problem was introduced in [25]. In
addition to directly related work, some other work has been done
addressing the issue of hot and cold documents and of bandwidth
division, though not in the context we are describing. In [1, 14,
2, 26] the issue of mixing pull and push documents together on
a single broadcast channel is examined. The idea is that popu-
lar documents are similarly considered hot, and are continuously
broadcast while all other documents are cold. These documents
are request through a back channel and scheduled for broadcast.
Similarly, in [1] the authors discuss how to divide the broadcast



channel bandwidth between hot and cold documents. The main
difference between previous work and ours is previous work deals
with a broadcast environment with a single channel and focuses on
scheduling items, not how to divide them into hot and cold. We
are looking into the division of both documents and bandwidth to
minimize latency.

The hybrid scheme relies on estimates of the popularity of doc-
uments in the web site because popularity determines the assign-
ment of documents to dissemination modes. Popularity estimation
can be approached separately for pulled and for pushed documents.
Pull popularity can be solved in sub-linear space by monitoring the
client request stream [9]. As for push popularity, the problem is
complicated by the absence of a client request stream. One solu-
tion is to occasionally drop each pushed document from the push
channel, thus forcing clients to send explicit requests. Such re-
quests can then be counted and the document popularity estimated
[25]. A related problem is multicast group estimation [20], which
can be specialized as follows in our context: remove a document
from the multicast push channel and re-insert it as soon as the first
request for that document is received. The document popularity can
be estimated by the length of time it takes for the first client request
to reach the server.

5. CONCLUSION
In this paper we examined three data management problems that

arise at the server in a hybrid data dissemination scheme. We ar-
gued that the document classification problem and bandwidth divi-
sion problem should be solved in an integrated manner. We then
presented a simple, yet essentially optimal, algorithm for the in-
tegrated problem. We validated the optimality of our algorithm
experimentally. We proposed solving the push popularity problem
by having each client request a hot document D i with some prob-
ability si, which the server sets in the push index. We looked at
the difference in using our push popularity scheme versus using a
scheme which simply drops an item off the push channel in order
to test its popularity. We showed that dropping an item off the hot
channel for one broadcast cycle can appreciably increase the aver-
age latency for approximately five broadcast cycles. Our proposed
scheme does not suffer from such disruptions.

6. REFERENCES
[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and

pull data broadcast. In ACM SIGMOD, pp. 183–194, 1997.
[2] D. Aksoy and M. Franklin. Rxw: A scheduling approach for

large-scale on-demand data broadcast. ACM/IEEE
Transactions on Networking, 7(6):846–860, 1999.

[3] K. C. Almeroth, M. H. Ammar, and Z. Fei. Scalable delivery
of Web pp. using cyclic best-effort (UDP) multicast. In
INFOCOM, pp. 1214–1221, 1998.

[4] M. Altinel, D. Aksoy, T. Baby, M. Franklin, W. Shapiro, and
S. Zdonik. Dbis toolkit: Adaptable middleware for large
scale data delivery. In ACM SIGMOD, pp. 544–546, 1999.

[5] M. Altinel, Q. Luo, S. Krishnamurthy, C. Mohan,
H. Pirahesh, B. G. Lindsay, H. Woo, and L. Brown. Dbcache:
Database caching for web application servers. In ACM
SIGMOD, page 612, 2002.

[6] Y. Azar, M. Feder, E. Lubetzky, D. Rajwan, and N. Shulman.
The multicast bandwidth advantage in serving a web site. In
3rd NGC, pp. 88–99, 2001.

[7] P. Chrysanthis, K. Pruhs, and V. Liberatore. Middleware
support for multicast-based data dissemination: a working
reality. In WORDS, 2003.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

[9] G. Cormode and S. Muthukrishnan. What’s hot and what’s
not: Tracking frequent items dynamically. In Proceedings of
Principles of Database Systems, pp. 296–306, 2003.

[10] A. Datta, K. Dutta, K. Ramamritham, H. M. Thomas, and
D. E. Vandermeer. Dynamic content acceleration: A caching
solution to enable scalable dynamic web page generation. In
ACM SIGMOD, 2001.

[11] A. Datta, K. Dutta, H. M. Thomas, D. E. VanderMeer,
Suresha, and K. Ramamritham. Proxy-based acceleration of
dynamically generated content on the world wide web: an
approach and implementation. In ACM SIGMOD, pp.
97–108, 2001.

[12] M. Franklin and S. Zdonik. “ data in your face ”: Push
technology in perspective. In ACM SIGMOD, pp. 516–519,
1998.

[13] Y. Guo, M. Pinotti, and S. Das. A new hybrid scheduling
algorithm for asymmetric communication systems. ACM
SIGMobile Computing and Communications Review,
5(3):123–130, 2001.

[14] A. Hall and H. Taubig. Comparing push- and pull-based
broadcasting or: Would “microsoft watches” profit from a
transmitter? LCNS, 2647, January 2003.

[15] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. O’Toole, Jr. Overcast: Reliable multicasting with an
overlay network. In OSDI, pp. 197–212, 2000.

[16] S. Jin and A. Bestavros. Temporal locality in Web request
streams: sources, characteristics, and caching implications.
In SIGMETRICS, pp. 110–111, 2000.

[17] A. Labrinidis and N. Roussopoulos. Webview
materialization. In ACM SIGMOD, pp. 367–378, 2000.

[18] A. Labrinidis and N. Roussopoulos. Webview balancing
performance and data freshness in web database servers. In
VLDB, pp. 393–404, 2003.

[19] Q. Luo, S. Krishnamurthy, C. Mohan, H. Woo, H. Pirahesh,
B. G. Lindsay, and J. F. Naughton. Middle-tier database
caching for e-business. In ACM SIGMOD, pp. 600–611,
2002.

[20] J. Nonnenmacher and E. W. Biersack. Scalable feedback for
large groups. IEEE/ACM Trans. Netw., 7(3):375–386, 1999.

[21] V. Padmanabhan and L. Qiu. The context and access
dynamics of a busy web site: Findings and implications. In
ACM SIGCOMM’00, pp. 111–123, 2000.

[22] V. S. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The
dark side of the Web: An open proxy’s view. In HotNets-II,
2004.

[23] V. Penkrot, J. Beaver, M. Sharaf, S. Roychowdhury, W. Li,
W. Zhang, P. Chrysanthis, K. Pruhs, and V. Liberatore. An
optimized multicast-based data dissemination middleware: A
demonstration. In ICDE 2003, pp. 761–764, 2003.

[24] P. Rosenzweig, M. Kadansky, and S. Hanna. The java
reliable multicast service: A reliable multicast library. SMLI
TR-98-68, Sun Microsystems, 1998.

[25] K. Stathatos, N. Roussopoulos, and J. S. Baras. Adaptive data
broadcast in hybrid networks. In VLDB, pp. 326–335, 1997.

[26] P. Triantafillou, R. Harpantidou, and M. Paterakis. High
performance data broadcasting systems. Mobile Networks
and Applications, 7:279–290, 2002.

[27] W. Zhang, W. Li, and V. Liberatore. Application-perceived
multicast push performance. In IPDPS, 2004.


